Suppose the number of bacteria in a sample grows exponentially and increases from 3000 to 3500 in 2 hours. Determine the value of k, the growth rate. How long does it take for the number of bacteria to triple?

- We must use the exponential growth equation: $\quad A(t)=A_{0} e^{k t}$
- For this problem we have $A_{0}=3000$.
- Since $A(2)=3000 e^{k(2)}=3500$, we can solve for k.

$$
\begin{aligned}
& 3000 e^{2 k}=3500 \Rightarrow e^{2 k}=\frac{3500}{3000}=\frac{7}{6} \Rightarrow \ln \left(e^{2 k}\right)=\ln \frac{7}{6} \Rightarrow \\
& 2 k=.15415 \Rightarrow k=.0771
\end{aligned}
$$

- To determine how long it takes to triple, we must solve the equation $9000=3000 e^{.0771 t}$ for t.
- $9000=3000 e^{.0771 t} \Rightarrow \frac{9000}{3000}=3=e^{.0771 t} \Rightarrow$
- $3=e^{.0771 t} \Rightarrow \ln 3=\ln \left(e^{.0771 t}\right) \Rightarrow .0771 t=1.0986 \Rightarrow t=14.25$ hours

